:
!:
_;
|

=3

M

Y,

M
@!EMOEANDUM

RM-4491-ARPA

i.
i Q SEPTEMBER 1967

|

Sl o i Ll s Tt o p g R

ARPA ORDEF. ND. 189-1

HYPERSONIC VISCOUS INTERACTION
ON A SLENDER BODY OF REVOLUTION
WITH SURFACE MASS TRANSFER

PREPARED FOR:

ADVANCED RESEARCH PROJECTS AGENCY

The

CTEARINGHC

T. Y. Li and J. F. Gross

DD C

DARMET
' 0CT12 1967 ‘_m
LG
B

REATD aprne

SANTA MONICA * CALIFORNIA

3 50



BEST
AVAILABLE COPY



ARPA ORDER NO. 188-1

MEMORANDUM

RM-4491-ARPA
SEPTEMRER 1987

HYPERSONIC VISCOUS INTERACTION
ON A SLENDER BODY OF REVOLUTION
WITH SURFACE MASS TRANSFER

T. Y. Li and J. F. Gross

This resea: -h is supported by the Advanced Research Projects Agency inder Contract
No. DAHCtI5 67 C 0111, Any views or conchisions contained in this Memeorandum
should net be interpreted as representing the official opinion or policy of ARPA,

DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

24 R D s

700 MAIN 3T o SANTA MONICA + CALIPOONIA « 90404




-iii-

PREFACE

Slender re-entry vehicles at high altitude and high velocity pos-
sess a flow field which results from the interaction between the boundary
i1ajer formed near the surface and the shock wave originating from the
leading edge or tip. This Memorandum studies the analytical conaditions
necessary for the scvlution of a set of simplified equations which describe
the interaction flow Field. Surface mass transfer, which occurs in the
case of an ablating vehicle, is also considered. The results of this
Memorandum wil® be useful in the interpretation of experimental data
and the implementation of numerical analyses. The Memorandum is jart
of a continuing study for the Advanced Rescarch Projects Agency in re-
entry aerodynamics.

One of the authors, T. Y. Li, is a professor in the Department of
Aeronautical and Astrorautical Engineering, Ohio State University,

Columbus, Ohio, and consultant to The RAND Corporaticn.
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ABSTRACT

An analytical formulation of the problem of hypersonic viscous
interaction on a very slender body of revolution with a thick boundary
layer and mass transfer is attempted. Particular attention is directed
to the establishment of the mathematical restrictions necessary to ensure
the existence of similar solutions of the lamina: boundarv layer equa-
tions for this class of problems. Yasuhara's analysis is extended to
include surface mass transfer and binary mixture effects, and it is
shown that similar solutions are possible only for three=-quarter=power=
law bodies of revolution. With regard to the problem of hypersonic
vis ous interaction on a siender body of revolution with a thick boundary
layer and surface mass transfer, it is shown that the criterion for
the existence of similar solutions is that L x% must govern the body

surface shape and the surface injection velocity.

T
2

Fe



=vii-

CONTENTS

PREFACE ..t vveeeteeaceenoneoocoasosossonocnorosssnsssssssnonasss Lil
ABSTRACT ...vvveeeceecooconootasccsscncoscorcavstsssasesssnosaneas V
SYMBOLS «.cveecceveocossssssssoststsovnonssssossosascssscsocsrassssess LX

Section
I. INTRODUCTION 4ceoceccesoocosccscsssssesscssossesessaes 0000000

II. CLASSIFICATION OF FLOW REGIMES ......ccceveeevococanrnsoans
The M Regime .....ciceetieveveeccsscovonosscnssososasosasse
The P=E=Y Regime ...vveieirreereeeenseeseecosonosoencsncnnns
The G-I. Regime ..veveeeecrececeneeecneeannns 0000000000600

III. BINARY BNUNDARY LAYER EQUATIONS AND BOUNDARY CONDITIONS ..
Transtormation of Binary Boundary l.ayer Equations ........

IV. SIMILAR SOLUTIONS OF THE HYPERSONIC, BINARY AXI~
SYMMETRIC BOUNDARY LAYER ....cveeeeecenecocesonronscnnne 10
The Analytic Characteristics of the G-L Equations ........ 13
Similarity Conditions fcr the Normal Velocity .....coeeees 14
Boundary Layer Effects on the Matching Conditions Between
Inviscid and Viscous F'ow R2gions ...ceeeveeeccececceres 18

V. SIMILAR SOLUTIONS IN THE P-E-Y REGIME .......c00civveeeee. 20
VI. SDIILAR SOLUTIONS IN THE G-L REGIME ....c.ccciecevencceaas 27
VII. MATCHING THE INVISCID AND VISCOUS FLOW SOLUTIONS ......... 33
VIII. CONCLUSIONS .veevcecceeusccnosessnnanssosasscasnsansasensss 38

AP LWL =

Appendix
VALUES OF A AND eo 5000000000C 0000000000000000000000000000C Y |

REFERENCES ..... 000D000000D00000000G terterssime ettt tenc e eeo 43

-




12

~ = H o> om0 a

Le

Pr

o oo

la ]

Sc

-ix-

SYMBOLS

¢onstant defined in Eq. (72)
constant defined in Eq. (77)
constant defined in Eqs. (86) and (133)
constant defined in Eqs. (118) and (134)

constant defined in Eq. (81)
dimensional constant defined in Eq. (96)

concentration
specific heat at constant pPressure

constant defined in Eq. (119)
constant of integratior defined in Eq. (127)

diffusion coefficient

constant defined in Eq. {120)

dimensionless eathalpy = H/He

total enthalpy

specific cnthalpy

constant defined by definite integral given in Eq. (136)
effective number of degrees of freedom

dimensionless velocity in x-direction = u/ue

thermal conductivity

characteristic dimension

Lewis number

Mach number

constant exponent defined in Eq. (96)

molecular weight

Prandtl number
pressure

universal gas constant
mixture gas constant
radial distance

Schmidt numb~r
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similarity coordinate defined in Eq. (12)
similarity coordinate defined in Eq. (10)

s!milarity coordinate defined in Eq. (14)
flow velocity component in x-direction

fiow velocity component in y-direction

coordinates as shown in Fig. 1
dimensionless concentration ci/ciw

edge of the boundary layer

iLh component
generaliied coordinate
wall

undisturbed stream

angle defined in Fig. 1
pressure gradient parameter defined in Eq. (33)

specific heat ratio Cp/Cv
boundary layer thickness

displacement thickness of boundary layer
hypersonic parameter defined in Eq. (71)
dimensionless similarity coordinate defined ir Eq. (13)

dimensionless similarity coordinate defined in Eq. (11)

dimensional similarity coordinate defined in Eq. (15)

constant defiaed in Eq. (72)

function defined in Eq. (24)
viscosity

density

stream function

parameter defined in Eq. (143)




1. INTRODUCTION

The purpose of this Memorandum is to present an analytical formu-
laticn oif the problem of hypersonic viscous interaction on a very slen-
der body of revolution with a thick boundary layer and surface mass
transfer. Particular attention is directed to establishing the mathe-
matical restrictions necessary to ensure the existence of siwuilar so-
lutions of the laminar boundary layer equation: for this class of prob-
lems. The determjznation of similarity conditions is important because
similar solutions are amenable vo c.aparatively simple analysis(l) and
find diverse application through the use of the local similarity con-

(2)

cept. Recently, Yasuhara demonstrated chat similar solutions can
be determined for a slender, three-quarter-power-law body of revolu-
tion when the boundary layer thickness is of the same order as the body
radius. In this Memorandum we extend Yasuhara's analysis to include
surface mass transfer and binary mixture effects, and show that in the
extended case similar solutions are possible only for three-quarter-
power-lav bodies of revolution. It is further shown that these simi-
lar solutions are characterized by the restrictive condition that
re/rw = constant.* This requirement for similar solutions is particu-
larly pertinent in the regime where re/rw = 0(1) or ye/rw = 0(1).

The equations which describe the boundary-layer growth on a body
of revolution contain the transverse curvature expression (rzlré).
For similar solutions to exist, this expression must be a function of
the similarity variable T. Particular attention is directed to the
regime where r:/rz << 1 or ye/rw >> 1, We derive a new system of equa-
tions that possesses the same analytical features as the equations
studied previously by Stewartson,(3) Glauert-Lighthill,(a) and Mark.(s)
The possibility that this new system has similar solutions is then ex-
amined under appropriate boundary conditions, including the injection
of gas at the body surface. The results iadicate that similar solu-
tions characterized by prv-similarity in the boundary layer can be ob-

tained. Finally, with regard to the problem of hypersoaic interaction

*
See List of Symbols
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on a very slender body of revolution with a thick boundary iayer and

surface mass transfer, it is shown that the criterion for the exist-

1/2

ence of similar solutfons is that rv, ~x must govern the body sur-

face shipe and the ¢ .rface injection velocity.
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II. CLASSIFICATION OF FLOW REGIMES

Viscous flow regimes may be usefully classified with respect to
the ratio of the characteristic body radius to the thickness of the
boundary layer. Three such regimes described below, may be cistin-

guished for the purposes of our problem.

IHE M REGIME

This regime couprises cases in which Ye /r = O(e) where ¢ << 1,

(6)

Here, Mangler's transformation permits a reduction of axi-
symmetri: flow boundary layer equations to two-dimensional boundary
layer equations. Transverse curvaturz effects are, of course, urim-

portant in this regime.

THE P-E-Y REGIME

This regime comprises cases in which ye/rw = 0(1) or re/rw = 0(1).
The appropriate compressible boundary layer equations with mass trans-
fer are considered by Yasuhara(z) and Probstein and Elliott,(7) who
show the importance of the effect of transverse curvature in this re-

gime.

THE_G-L REGIME

In this regime cthe boundary layer thickness is large compared with
the radius of the hody of revolution; that is, Ve /r > 1, Using the
criterion stated above, we can characterize this regime by &,/ )

0(e), where ¢ << 1. Stewartson(3) and Glauert and nghuhill(a)dEst
with incompressible flow problems in this vegime. Mark(s) and Steiger

(8)

and Bloom also considered certain ci:<ses of compressible boundary
layer flows in this regime. Their results demonstrated the extremc
importance of transvarse curvature effects. The boundary layer equa-
tions for the G-L regime possess a basic structure which leads t«, a
logarithmic velocity prefile distribution near the body surface in

the case of zero mass trarsfer.
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III, BINARY BOUNDARY LAYER EQUATIONS AND BOUNDARY CONDITILONS

The no-slip condition must apply at the body surfaco. This re-
quires th: use of the boundary layer equations in the region adjacent
to the body surface. A gas is injected normal to the surface such that
a binary boundtary layer flow results. The binary boundary layer equa-

tions for axisymmetric flow may be written:

o) o)
= (pur) + Sy (pvr) = 0 (L)
g uo_ % la_( 2u )
Pty = T3y Wy (2)
§R= {
2 =0 3)
M@ g Lo fop ] 13, (. Lyal (u)]
PY 3x tov oy r oy rPr y] + r oy i\l Pr/ dy \2
oG
13 1£( u_l) —i
+ r oy [ru Pr . Le ? hi dy (4)
aC oC oC
. & - 12 ( —i)
i + v oy r dy s D12 y / (3)
where
Cp = specific heat at constant pressure of the ith component
i
C = X C.C
P i TPy
X th
¢, = mass fraction of i~ ccmponeat
D = binary diffusion coefficient

H = total enthalpy = h + (1/2)u2
oy,
i

-2
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enthalpy of the 1 &B component

thermal conductivity of the fluid

12 Cp/k

Prandcl number, u Cp/k

Lewig number, p D

fluig pressure

rw+ycrso’
rw(x) defines the shape of the body surface

Schmj dt number, u/p D12

flow velocities in the x,y dirertions, respectively
coordinates, as shown in Fig, 1

viscosity coefficient of th: fluid

fluig density

Within the boundary luyer we have, from Eq. (3),

where

=

The

P (x) = Ror (6)
R = SCR = f¢ R (7)

. 11 im

i i i

molecular weight of i-gas
universal gas constant
component gas constant

mixXture gas constant

boundary conditions at the wall are characterized by the no-

slip condition, copstant wall temperature, the coucentration of the in-

jectant gas, and the Eckert condition, which specifies that the normal

mass flow velocity of the main component (i = 2) in the gas mixture

(
vanishes at the body surface.“g)




when y = 0; u =0 (8a)
C1 = Clw = constant (8b)
h = Hw = constant (8¢)
P aC
1
e, = -g-0,, (52) (84)
W C2w 12 \oy y

At the edge of the boundary layer, the properties of the flow must

match those given in the inviscid flow.

when y = §, u = u, (9a)
¢, = 0 (9b)
H o= H (9¢)

TRANSFORMATION OF BINARY BOUNDARY LAYER EQUATIONS

We shall introduce a coordinate transformation to trans.orm, under
certain prescribed ccnditions, the partial differential equations de-
scribing the axially symmetric laminar boundary layer into a set of
nonlinear coupled ordinary differential equations. The transformation
is quite general so that it can be applied to all the regimes described
above. The boundary layer coordinates (x,y) are transformed into the

similarity covordinates (sk,ﬂk) as follows:

S = I: Cpeueuer dx (10)
pu

N = == 1 o dy (11)

k /Esk .lo Pe
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where C = the Chapman-Rubesin constant

r, = characteristic dimension
The transformation can be applied to the P-E-Y and the G-L regimes as
follows:

In the P-E-Y regime, = T thus

2
§ = s = Jo Cpeueue"w dx (12)
P u
N = 7 = L. jy £ ray (13)
k v'2s 0 pe

In the GelL regime, L T thus

* 2 -
S, = s = J: Cpeueuere dx (14)
* PY
N = T = ejj"vf,’—rdy (15)
/23 0 "e

We shall discuss latr: these forms of the transformation and their sig-
nificance. Their immediate applicatiun is to the boundary layer equa-
tions which can now be rewritten in the new variables (sk,ﬂk). The

stream function ¥ is defined by:

%% = «pvr (1l6)
%% = pur (17)

We consider those flows where u, H, and C1 are expressed &s fellows:

CIC

= 1(’(7;k '5,) (18)
e

ey e
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where the prime denotes b/bﬂk.

written:
r2
()\ _2_ K”> + KK” =
Tx
2 4
r. G o
(K 2 Pr) + K6
T
r2 1
— ¢ 1
(" 25 1)ty
k
where
A =

6T »8y)

= Zi(ﬂk ,sk)

Equations (2),

(19)

{20)

(4), and (5) may now be

ZSk due (K'z _ EE\
ue dsk p )
R XK ”]
+ 25, >y K - S K (21)
u2 ] rz 1
ig L?\ s (E - 1) K'K"]
e r£
+ 2sk[1<' —S-Gs— - _a%_ c'] (22)
k k
C 2 ?
v r_.l_(__ )( - ) o
i [)‘ 2 5c \Le I\B; - b, Z
€ k
dZ
1 ¥ 3K 7
2s (— Z ) (23)
k Bsk ask 1
1
3o | (26)
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In the new coordinate System, the boundairy conditions are expressed as

follows:
when 7, = 0 K’0) = 0 (25)
Zl(O) a ] (26a)
G(0) = H—" (26b)
e
3K \ Clw T 2
B = S — ol s
w 1w k
when ’Wk = T]ke Kl(ﬂe) = 1 (28)
Zl(nke) = 0 (29a)
G('Tlk ) = 1 (29b)
e

Al
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IV, SIMILAR SOLUTIONS OF THE HYPERSONIC, BINARY AXISYMMETRIC
BOUNDARY LAYER

By neglecting terms of order (I/Mz) in a hypessonic boundary layer,
we obtain the following expressions from Eqs. (18) and (19).

p \ 2s, du Yy -1
.,2__g)ke_e w2
(k2-g)ke o e () G-kD G0
e k e
2
Ye
'S = 2 (31)
e
h, = h
1 2 _ e t2
where
d £n Pg
B =2 d £n s (33)
k
1+¢C (;g - 1>Z My »s,)
1 ] 1V k’7k
Fi(Mesy) = jp*2 m
1+Cy, (jz 2 m 1) 21(M>8)
(34)
¢, (B 2_y)
1w j2 + 2 m, /
FyMeosy) = T +2Z . (35)
1+Cyy (j ¥2 m ]')Zl(nk’sk)
2 1
e lowing relationships were used in the derivation of Eqs. (34)

and (35):




g

HT

~1l-
- IC.R R
R ii 1
2. "1*(?'1)(: Z. (M. ,s,.) (36)
[y b}
R, ("CiRi)e A Iw“1" 'k °k
iy +2
CPi = 2 Ri (37)

The j, is defined as the effective number of drgrees of freedom of the

ith component.(ll) In this study, j = 5 for diatomic gases and j = 3

for monatomic gases. Substitution of Eqs. (30) to (35) into Eqs. (21)
to (23) gives:

4

(He) s - L ln o ek
2 2y 1V e B
r e
k
X', XK ,,-:l
+ ZSk[S;; K’ - S;; K (38)

4

N

+ [* :_2 ;—c (%e_ - 1) Fy(Mrsy ) G - Klz)zﬂ
k

(39)
2 f 3z -
([, 1 1) ' 1.,/ _ XK /0
\} 355 %)) +Kef Zsk[as K- 3 %1 (40)
r.k k k

For the problem of hypersonic viscous flow past a very slender body of

revolution with injection of coolant gas at the suriace, these equations
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can be treater under the boundary conditions given in Eqs. (25) to
(29).

If similar solutions are to be obtained, the following conditions
must be satisfied:

() K = Km)
¢ = G
2, = 2,(1)

Hence, Eqs. (38) to (40) become:

1'2 " ’ " Ye - 1 2
(X—K) + KK - .._._._.5F (n )(G-K') (383)

2 2y 1Yk
r e
k
2 ! 2

1 r ,) o [ r (; - )(](”]

-;-X :E G +KG' = 2|\ = \pr 1
k Tk

[\

+ [ 5 L., - xBz!] (392
k

2 o
()\ 1 Zl,) + Kz, 0 (40a)

These equations are to be solved under the boundary conditions given
in Eqs. (25) to (29), whence Eq. (27) becomes

R(0) = %)w T'?-l_‘cqlzzf(o)(;f)z (27a)
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(b) A=) Y
S¢ = Se(M) (42)

Pr = Pr(nk) (43)

2
(c) The transverse curvature parameter r2/rk must be a function of

ﬂk; that is,

N

5 o= £ (44)
Tk

(d) The pressure gradient parameter, as defined in Eq. (33), must be

constant:

d Znp

b= 2 (45)
k

(e) The surface boundary conditions are defined such that Clw’ Hw/He,

2
and (rw/rk) are constants.

THE ANALYTIC CHAKRACTERISTICS OF THE G-L EQUATI ONS

Glauert and Lighthill(a) studied the problem of the incompressible
axisymmetric boundary layer of a long cylinder. Their primary purpose
was to examine a very thick boundary layer on a1 slender body; that is,
where re/rw >> 1. 1In our notation, their equation for the boundary

layer flow is
*
[.n KI],+%KK” = 0 (46)

Suppression of the pressure gradient term in Eq. (38a) and taking

A =1 gives

sessar v sssasms ot gpe
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[(—:—)2 x”] + KK’ = 0 (47)

. 2 %, %
For inccmpressible flow, it will be shown later that (r/re) =1 /ﬂe.
Hence, Eq. (47) can be written

[%K//J + KK’ = 0 (48)

The similarity between Lqs. (46) and (48) demonstrates that the system
of equations presented here is entirely consistent with the Giauert
and Lighthill equation.

SIMILARITY CONDITLONS FOR THE NORMAL VELOCI rY
sy TR AN NORMAL VELOCI Y

In seeking similar soluticns for Problems relating to mass trang-
fer in the boundary layer, it is essential to ensure that the normal
velocity at the surface, which governs the axial rate of mass transfer,
is a function of the similarity variable only. This can be shown by
first combining Eqs. (11) and (17):

Combining Eqs. (18) and (49) gives, in the case of similar solutions,

Vo= ﬁg{(K(ﬂk) (50)

From Eq. (16), one obtains

ank

o)
— ’ ——
-pvr = /ZsL 3% K *K 5 (JZSk) (51)




Now
T o My 25
ox dy ask ax
Inversion of Eq. (11) gives
y = zsk I' perk dn
PeleT o  Pr
which by differentiation, yields
2s
¥ 11 {1___k____ } __d
ask Peuerk /fsk pur (peuerk) i
Combining Eqs. (52) and (54) yields
S 3s 28 nkpr
—k — Kkl Tk _&_ ek
9x Zsk ox . p u.r, as (p Helr )} ek Yo PT dn

This result is substituted into Eq. (51) to yield

2s, 3(pur)
pvr k eek” '
e ol i {[p ur ds 1][[ a1 P o .

From Eqs. (30) and (33), we obtain, respectively

23k due

u ds
e

(53)

(54)

(55)

(56)

(57)

‘jﬂ\k
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P Yy -1 ;
£ = e _ 12 o w12
= > Miﬁ‘l (G K ) - (58)
Zeuce, Eq. (56) can be written
vr ZSk r
- 3s =K'{l'pur eek)} S\nk’r)x (59)
1 "k e ek
" ox
where
U ]
kv— Y -1 A I
f LK'2+—9—-—M‘F,,(G - 1('2):‘—k 1
( rk\ 0 2 e . T
F\he 3/ ° — (60)

K242 5 MiFl(d - K'Zg

In hypersoric boundary iayer: the terms of O(I/Mz) ara neglected, and
Eqs. (59) and (60) reduce to

23 r
- _E‘__Vr - { o —--———k a hY E._ : ( _l£> !
Js = S 1 P U T} as (¢ ele’ k’f r Ea Wk’ r K® (61)
1 Pk k
vV is, ox
where
nk 2 T
. f F,(G - K'®) — 4"
( K o - (62)
F, AT, — =
4\k’ r . FI(G _ K'Z)

It should be pointed out that the right-bund side of Eq. (61) is

a function of ﬂk only, provided that

(a) = = £(n) (63)
k

la]




ot al »

L’

«]l7=-
and

(b) Zsk
Pelely as (pe efK) = coust. (6)

Now condition (b) can be written as follows:

25 2P 2 o
2s g p ds r, 3s
P ur s (peuerk) - 2 1 + 2: Buk + 22 auk
Peeic %ok v’ S
4y Bsk u, Bsk
(65)

where

as defined in Zq. (57). 1In the hypersonic adiabatic free Stream, the
total enchalpy is constant so that dh + u, du = 0, Indeed, in the
hypersonic boundary layer, 6§ ~ 6* so that very 11tt1e mass flows into
the boundary layer. Hence, the specific entropy is constant along the
edge of the boundary layer and it follows that

1
» dp, +u, du_ = 0 (66)

Jhich leads to

ﬁf+ﬁ=o (67)
e e

and
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L %
p oOs
e k 2
1 aue - Me (68)
u, Bsk
We therefore have
2s 2s, or
L 3 2 k "k
e e (P = - ~E -+ S (69)
e ek k YeMe k k
Tais shows that
2s, or
k. k const. (70)
. Bsk

is sufficient for condition (b);: this is a geometrical constraint on

the problem.

BOUNDARY LAYER EFFECTS ON THE MATCHING CONDITIONS BETWEEN INVISCID ..
VISCOUS FLOW REGIONS

The axis of symmetry of the body lies along the direction of the
undisturbed free stream. At the body surface, a particular rate uf

The disturbed

flow region surrounding the body is separated from the undisturbed flow

mass transfer due to coolant gas injection is specified.

by the leading-edge shock wave.
the body surface can be divided
cous boundary layer region. We

pressure on the common boundary

The region between the shock wave and
into an inviscid flow region and a vis-
shall match the normal velocity and the

of these inviscid and viscous flow re-

gions.

(11 (12)

Stewartson and Oguchi have obtained similar solutions of
the hypersonic inviscid flow region using the small-perturbation theory.
These results can be sunmarized in the following equations for the nor-

mal velocity and pressure in the flow field:




TTRHAT ST

w19«
ve X n=-1
T e neeo (i) (71)
[- -]
Y Y
p e N N S U T,
e n n e 1 N X
22 - D ;3 (v +1 E"(A N) (I) (72)
YeMme Py Ye +1 e o

where A, N, and 60 are constants., These values v, and P, will te
matched with the corresponding viscous £low solution at the edge of
the boundary iayer. These matching conditions will determine n and ¢
in Eqs. (71} and (72).

The value of ve/ue can be obtained from the boundary layer analy-
sis by evaluating Eq. (56) at y = 6. This result has also been obtained
by the authors usiiy, a direct integration of the continuity equation,(13)

and gives, for hypersonic boundary layers,

v P T
e W WW ds
u = pur + dx (73)
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V.  SIMILAR SOLUTIONS IN THE P=-E-Y REGIME

We note that iy the P-E-Y regime, r, = r. and (c ) become

k k’nk

(s,M), as defined in Eqs. (12) and (}2). The conditions for similar

solutions in this regime are:

(a)

(b)

(c)

(d)

(e)

A= a(m) (74a)
Sc = Sc(M) (74b)
Pr = Pr(M) (74¢)

The transverse curvature parameter rz/rs must be a function of T:

N

o]

r
5 o= 5 (75)
A

The pressure gradient parameter as defined in Eq. (33) must be

constant:

d in P,
b= 2T 7€)

The surface boundary conditions are defined such that Clw and
Hw/He are constant. This requires uniform distribution of the
wall temperature and the concentration of the injectant gas.

The boundary layer effects given in Eq. (73) must be included in

the matching condition.

The above condition (c) implies that

s = Ap an

b 4
where A is a dimensionai constant. From Eq. (12), one obtains



2]~
u
s | B e 2
s J: RT % Pefy d. (78)

In the hypersonic flow regime, u, =u_. InEq. (78), A can be treated
as a constant evaluated at some reference temperature and composition,

A= lm. To the same approxiiation, then,

£ . (g—) t. onst. 79
RT RT/, ¢ (79)
and hence
2
s=Brpr dx (80)
ew
0
where
- ,L) -
B (RTK ; u_ const, (81)

Combining Eqs. (77) and (80) yields

J)ot Per: dx % 2/B
278 = = const, (82)

e

Consider now condition (b), which requires that r2/r§ be a func-

tion of T only. From geometry

T 2 2 cos «
(—-—) = ] 4 E—=2= [y r dy (83)
r 2 d

w T 0

or
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<§_)2 s (2 cos a% /28

w pur
eew

1P
["==an (84)
0 P

Equations (58), (80), and (84) together give

y =1

(§;>2 =1+ (/B/Z u, cos «) ( £ Y. ) a j: F,(G - K'z) dn  (85)

*
where terms of O(I/Mi) have been neglected, cos ¢ = 1, and a is de-
fined as

a = ' (86)

*
Now a must be a constant in order that r2/r§ be a function of T only.
Consider finally the matching condition., ¥rom Eqs. (71) and (73),

we have

X n-1 pwvwrw db* drw
neeo(f) = (p ur v dx ) v dx (87)
eee

(Effective body) (Ziscous effects) <local inviscid)
angle n body surface body angle

In matching the viscous and inviscid solutions, we have included the

boundary layer effects. Since

r, =1, + § cos « (88)

= r, + 85 (89)
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Equation (87) may be written

x\n-l pwvwrw dre
neec(f’ = -———-p _— + = (90)
cee

Since, by Fq. (51),

T S S U (v25) (91)
pur .2 pr ox
eee yeMe ee

we may write

L 2 r—
AR z . ©_ E s KO 1 /E (92)
2p u MZ P * B
A a

ur
peee

where Be = (uu/ﬁTl)e. The final expression for tic matching condition

is therefore

2 -
720 (§>n ! — 2 ﬁf Pe K(0) E + :i:'_e (93)
= - |3 =
o\L Pl Mz a pere B dx

Similar solutions in the P E-Y regime must satisfy the conditions

given in Eqs. (82), (86), and (93). Equation (72) can be rewritten

2(n-
p, = ax*(h (94)
2n-1 v v -1 Ye 1 ve
d=(2) " nf—= ( e ) 1 (Ah N) 1 2(1-n) 2 2 (95)
2 Y +1 0 © @
Y +1 e o
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Let

r = bx (96)

where b is a dimensional constant. From Eqs. (82), (86), and (93),

one obtains

2m + 1 2 .
1+ 2(n - 1) 5 (97)
n+m=% (98)
n = m (99)

These equations yielu n =m = 3/4, B = -1/2. Equations (38a), (39a),

and (40a) may now be written

r2 ’ Ye = 4 2
(A—Z-K"> + KK’ = A Fl(l(' - G) (100)
r e
W
2 ! 2 ‘
(;—rxr—zc’) +KG' = 2[x1—2<;—r-1)m<”] (101)
T r
w W
2 4
£_1_.<_1.__ )p - k274
v [k r2 Sc \Le 1 Z(G K )ZIJ
w
2 4
(A%é—czl') +xz! = 0 (102)
r
w

The boundary conditions for this set are:




E
hi
E
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21(0) = 1 (103b)
H
G(0) = = (103c)
e
]
A Clw
K(0) = o5 C—-—Zl'(O) (1034d)
2w
T‘ = T|e; KI(TIe) = 1 (1043)
zl(ne) = 0 (104b)
c(ne) = 1 (104¢)

The geometrical constraint for similarity given by Eq. (70) will

now be examined for this regime. Equation (80) reduces to

2
pr
L % - eV (105)
J p r2 dx
n ew
By Eqs. (94) aud (96), we obtain
LM
r, ox . Brw .
I 25 7 Y 3% T Zm-D Fm+Fl - const. (106)
s ox w

Thus the condition of similarity is satisfied. The foregoing arguments
show that similar solutions exist for the case of a slender body of
revolution in hypersonic flow with surface mass transfer. The shape

of the body must be
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3/4 (107)

For zerc mass transfer, the result confirms the conclusions reached by
Yasuhara. (2)
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VI. SIMILAR SOLUTIONS IN THE G-L REGIME

In the G-L regime, r, =r, and (s ) is transformed into

- * k’nk v
(s ,7), as shown in Eqs. (14) and (15). The conditions for similar-

ity in this regime arve:

(a) A= k(ﬂ*) (108a)
*

Sc = Sc(M) (108b)
L3

Pr = Pr(M) (108¢c)

. 2,2 . *
(b) The transverse curvature parameter r /re must be a function of M :

*
= &) (109)

] IH
(¢ 3 X Y

(c) The pressure gradient parameter as defined in Eq. (33) must be

constant:

d 4n P,
B = 2—= (110)
d £n s

(d) The viscous term given in Eq. (73) must be included in the match~-

ing condition:

v pvr ¥
e _ www ds

u  pPur VG (73)
e eee

(e) The surface boundary conditions are defined such that Clw and
H /H are constant.
w e

(£) The boundary condition [Eq. (27a)] relating to the mass transfer
at the surface must be compatibie with the requirements for a sim-

ilar solution.
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(k ) Clw i (Lw\
KO = &) 1o 5O &) (1

W 1w e

Condition (c) implies that
* *

O o Wy (112)

—
o

*
where Al is a dimensional constant. Equations (l4), (81), and (112)

give

278 = B = const. (113)

which is similar to fq. (82) for the P-E-Y regime.

Condition (b) requires that the transverse curvature parameter
rzlri must be a function of ﬂ*. Since this study concerns a slender
body of revolution, an approximation is made by assuming that the x-
axis an? the axi: of symmetry are coincident; that is, cos o = 1,

Equation (15) then ylelds

p
b Pe " = rdy = radr (114)
pu_ op
e e
It follous that
n* p
* X *
2 o ohs L | 2a (114a)
p u P
ee 0
ﬂ*
2 A 1 e P,
r, 2/2s 5 u I 5 dn (114b)
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* I3 * I3
where ﬂe denotes the boundary layer thickness ir the T variable.

These equations show that, in the G-L regime,

) N e, o
of - oo
€ ,ﬁe pe *
gy
0
Combining Eqs. (58) and (115) gives
ﬂ*
9 J F (C - K'2) d'ﬂ*
r 0
(;—) = s (116)
e ﬂe ) .
J. F (6 - X' dn
0

where terms of 0(1/M§) are neglected, Equation (116) shows that
(“’re)2 is a function of n* within the present approximation. Indecd,
r/re = y/§, so that r/re is a proper similari*~y variable in the physi-
cal coordinate of the boundary layer.

For this regime, the matching condition in Eq. (87) is

2
n-1 u B me M dr
nee () 7T 2 2 &—“’) KO , e (117)

*
meumB a) 2 P.T, dx
where
r2 dx H2
[[] 7 ]
* 0
a, = = constant (118)

AN e e ctes s e
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Therefore, similar solutions in the G-L regime must satisfy the
conditions in Eqs. (113), (117), and (118). Next we assume that

r = cxt (119)

p = ax2(mD) (120)

and determine that m = n = 3/4, B = - 1/2, The boundary layer equa-

“ions may be rewritten as:

( rz f Ye -1 2
- " Y 4 -
2 21() + KK oy Fl(K G) (121)
r e
e
2 ‘ 2 ’
(;—r—c’) +KG! = 2[x‘—(;—-1)1cx”]
r 2 2 r
r r
e e
+[r 2Ll 1} F (6 - k)2 ] (122)
;2 Sc We 1
e
2 I'4
I_l-__ I) <
(x 7% z/) + iz 0 (123)
e
The boundary conditions are
* I'4
T =0 K(0) = 0 (124a)
21(0) = 1 (124b)
H
G(0) = H—" (124c)
e
2
X 1‘
K(0) = Q)—-ZI(O)\ ) (1244)
‘ e
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and
7 . " KM 1 (125a)
e e
z. 0 125b
() (125b)
*
G(ne) = ] (125¢)
Condition (f) requires that
o
2
(r—") = const. (126)
e

Treatment of the geometrical constraint given by Ly. (70) gives
the same result for the G-L regime that was shown Previously in Eq,
(106). In the G-L regime, therefore, "exact” similar solutions are
obtainable only for the case where r, ~x3/4. For very slender bodies,
the condition (rw/re)2 = 0 should be considered. This suggests an in-
consistency, since K(0) = 0 for finite Zl'(O). To alleviate this diffi-

culty the presernt authors, in Ref. 18, adopt the following condition:

Clw

K(0) = C—-D (1272)
2w

where D is a finite and negative constant. When thig alternative con-
dition can be accepted, it replaczes Eq. (124d) thus making then pos-
sible "approximate' similar solutions of the G-L regime, Within this

approximation, it may be observed that

T~ 5~ 374 (128)

~x 12 (129)
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in the hypersomi:c viscous interaction solutions of the G-L regime.
This approximate result is completely anilogous to the strong inter-
action solution on a hypersonic flat plate with surface mass trans-
ier-(14) Pressure data on a solid cone in the st:ong interaction re-
gion have been analyzed by Yasuhara,(ls) and these data are in gereral
agreement with the present prediction. This agreement may be fortui-
tous, however, as the hypersonic viscous interaction problem for a

slender impermeable cone ylelds rigorously only a nonsimilar solu-
tion.

s 2ot N =
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VII. MATCHING THE INVISCID AND VISCOUS FLOW SOLUTI ONS

Consideration of the above solutions and those of Mirels(17) for
viscous and inviscid regions show that similar solutions exist both
in the inviscid and viscous flow regions. It remains now to match
these solutions to obtain the proper behavior in the strong interac-

tion region.

Equations (83) and (85) yield

re r, Ye -1
(;—) = (;—) + Y ue 2R aka cos o (130)
k k e
where
T]k
& 2
1, = [ F@-x? (131)
k <0 1 k
and

a, = 3 (132)

*
In the P-E-Y regime, nk =1, a =a, r, = r e In the G-L regime,

* * 2
ﬂk =1, a =a, (rw/re) -0, T, = I, It can be shown that
= e 133
a ooT (133)

* 1
S - (134)

b, ¢, and d being the same as defined in Eqs. (96), (119), and (94),
respectively.
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In the P-E-Y regime, Eq. (130) becomes (cos o = 1)

Ye s I
c = b(1+ Ye-u/-d'g>

1/2

where

m

e
2
1 = J; Fl(G - Ky a7

In the G-L regime, the analogous result is:

where

17 = f F.(G - K'z) dn*

1f

then Eq. (135) becomes approximately

Y 1 a¥
. __ \
e | (1—,{)

e " oa

(135)

(136)

(137)

(138)

(139)

(140)

which is formally identical to Eq. (137). Thus Eq. (139) provides a

numerical estimate of the size of the body to which the G-L regime ap-

proximation applies; that is,
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Y -1 5
b << eY uy/ 31 (141)
e

It also shows that the G-L regime may be treated in a manner similar
to the general scheme of the P-E-Y regime. Therefore, only the P-E-Y

regime will be examined in this section, Equation (135) may be written
as

2
re (C)Z
5 = ) = 1+q (142)
r
w
where
) i
- Y +1 % Y + 1.7 2 / ; -Ye/2 /4, |
- JE 0w g G0 e, () i
B ‘e 1/3 Y Y -1 o He \ @)X f
e 2 e e -] © !
(143) |
and l
A'lw DmumL ;

X = FF R = (144)
eQ em uw

where X is the hypersonic viscous interaction parameter, In the pre-
8<at problem, b/L1/4 is nondimensional. In terms of this representa-
cion, Eq. (139) becomes ) >> 1, which would be the condition for the
G-L regime approximation. Values of A and 90 to be used in Eq. (143)

are given in the Appendix. From 2q. (92), one obtains

PV I 1/4
WWw {8 K(0) b 1)

= e 7rﬂ:1’ — |- (145)
peuere 1 Mz (X

TR

It can be further shown that




T
14 _ ( Jh 0 KW 1
eeoL 1 3T +0 1 Mz) c (146)
e
Define
b
€ = —— (147;
inv L1/4e
(o]
then
€
- TTr (1. b0 KO) 1)
Sinv = V17 (1 T3 { / (148)

For very slender bodies of revolution, Me = O(Mm); thus, neglecting
O(I/Mz) terms,

(<]

= + (149)
inv

provided K(0)/I = 0(l). Equation (149) applies when the effect of the

K * : !
pwvwrw/peuere term is negligible and is of O(I,Mi).

The expression for Q1 in Eq. (143) contains ¢; thus,

i » & (Mbe)(ﬁ;einv) (150)
where
+1.1/2 v o+ 1 Ye/2 1 -Ye/z
L = Jr%: (Y, - 1 -3%3 (g) (Ye 5 ) (Ye . 1) 7= (AN N>
e 2 e e o
(151

Tnese expressions can be introduced into Eq. (149) to yield




inv inv

Thus € can be determined and the hypersonic viscous interaction prob-
lem is solved. To compute the induced pressure due to viscous inter-

action, we define

- d
dinv R (153)
-1/2
pinv i dinv 1§ (154)

The surface pressure on the body of revolution in an inviscid hyper-

somc flow is P v’ The induced pressure rise is due to viscous in-

teraction
5P Pe = Pijny ~ (d - dinv)X-1/2
= OGPy (155)
Therefore
Yo/2

S
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VIII. CONCLUSIONS

We have obtained a similar solution for the case of a hypersonic
laminar boundary layer on an axisymmetric body. The strong intecrac-
tion between the boundary layer and the shock wave has been considered,
and the analysis includes mass transfer from the surface. In the vis-
cous flow regime, the boundary layer equations were transformed to a
set of ordinary differential equations employing appropriate similarity
variables. The inviscid region was treated using the well-known simi-
larity transformation for the small-disturbance equations. These so-
lutions were matched at the interface between the two regions, requir-
ing that the pressure and normal velocity be continuous. The matching
procedure , :lded an analytical expression for the surface pressure
and a similarity law for the normal velocity at the wall.

We have derived a set of analytic expressions that gives the re=-
lationship among the induced pressure at the wall, normal iajection
velocity at the wall, and other important wall variables, in terms of
the parameters that describe the strong interaction flow.

A transformation appropriate to both the P-E-Y regime and the G-L
regime has been derived from Eqs. (10) and (11). This transformation
leads to the general set of equations, which can then be applied to
the appropriate regime.

Within the restrictions indicated in the present study, similar
solutions have been obtained for the case of a thick boundary layer
on a very slender body of revolution. However, when the boundary lay-
er thickness and the characteristic body dimension are of the same or-
der of magnitude, it was shown, in agreement with Yashuara's(z) ear-
lier conclusions, that rigorous similarity is possible only for three-
quarter-power bodies.

For an axisymmetric body, the similarity condition for the normail
velocity at the wall follows a (pvr) law rather than the well-known
(pv) law in the two-dimensional case.

The restrictive nature of the similar solutions is adequately il-
iustrated in the present study. In physical problems of interest, it

may be necessary to deal with more complicated situations than those
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allowed b- similar solutions. We have seen in Section VI that in hy-
personic viscous interaction problems, similar solution may bte appli-
cable only in the outer viscous flow cegion and may not be applicable
in the inner viscous flow region (cf. Eq. (124d)). In such cases, we
strictly must obtain nensimilar solutions of Eqs. (38) to (40), under
the boundary conditions in Eqs. (25) to (29). The scheme of calcula-
tions used in Refs. 19 and 20 may be adopted for this purpose. In the
present Memorandum, the surface condition in Eq. (127) is adopted %o
obtain "appreximate" similar solutions of the G-L regime. Alterna-
tively, for the G-l regime, the visoous flow region may be dealt with
by a composite layer approach in order that all E?g)physiaal boundary

conditions are rigorously satisfied. Stewartson has recently
treated the hypersonic slender cone problems by this composite viscous

layer representation.
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Appendix

VALUES OF A AND 8

The similarity solutions for inviscid hypersonic flow over slen-

(17)

de: power-law Lodies have been computed by Mirels. In terms of

Mirel's data for axisymmetric three-quarter-power law bodies, we have

Ye My F(M,)
1.4 .875 696
1.67 .819 634

These values of ﬂb and F(ﬂb) are related to 90 and A by the following

formulas:
0 = le
201 " 1 Ve
. 1 n {e ) 1 (,N )
F(My/ Y + 12 \y +1/ 3 (A N
e o
where
ay
e
= >
ul n-1<+nry v
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